您现在的位置: 首页» 科研动态

内蒙古河套灌区节水灌溉与水肥高效利用研究展望_史海滨

发布日期:2020-12-17   

2020 11

灌溉排水学报

39 卷 第 11

Nov. 2020

Journal of Irrigation and Drainage

No.11 Vol.39

文章编号:1672 - 3317202011 - 0001 - 11

内蒙古河套灌区节水灌溉与水肥高效利用研究展望

史海滨 1, 2,杨树青 1, 2,李瑞平 1, 2,李仙岳 1, 2

李为萍 1, 2,闫建文 1, 2,苗庆丰 1, 2,李 祯 1, 2

1.内蒙古农业大学 水利与土木建筑工程学院,呼和浩特 010018

2.高效节水技术装备与水土环境效应内蒙古自治区工程研究中心,呼和浩特 010018

要:水资源短缺、土壤盐渍化及肥料利用率低是制约内蒙古河套灌区农业可持续发展的三大主要因素。随着灌区节水工程的实施和黄河水利委员会对灌区引水量的限制,引黄水量大幅度减少,河套灌区的水资源合理配置、灌溉方式、水肥运筹模式及灌区生态环境发生较大变化。灌区受水资源限制和水肥管理需要的现代灌区建设中面临许多新的问题,迫切需要理论支撑。该文从河套灌区农业耗水研究、高效节水灌溉理论、节水控盐灌溉制度和节水对作物品质影响、盐渍化灌区水氮耦合与有机无机肥耦合机制等几个方面总结了河套灌区 2000—2020 年的研究成果, 并提出了在未来的研究中,应加强基于灌区生态安全的高效节水灌溉技术的应用,优化灌溉制度及作物品质提升的研究、土壤碳氮循环和氮素矿化研究及现代化技术的应用。

关 键 词:河套灌区;节水控盐;水肥高效利用;作物品质;生态环境

中图分类号:S27 文献标志码:A doi10.13522/j.cnki.ggps.2020155

史海滨, 杨树青, 李瑞平, . 内蒙古河套灌区节水灌溉与水肥高效利用研究展望[J]. 灌溉排水学报, 2020, 39(11): 1-12. SHI Haibin ,YANG Shuqing, LI Ruiping, et al. Water-saving Irrigation and Utilization Efficiency of Water and Fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for Future Research[J]. Journal of Irrigation and Drainage, 2020, 39(11): 1-12.


0 引 言

内蒙古河套灌区是全国 3 个特大型灌区之一, 随着灌区水利事业快速发展,先后经历引水、排水、灌排配套和节水 4 个主要建设阶段。河套灌区从

20 世纪 50—60 年代,重点开展灌溉引水工程;从

20 世纪 60 年代中期—70 年代末,重点开展排水骨

干工程建设;从 20 世纪 80 年代末—1995 年,开

展了灌区灌排配套和田间工程建设;从 1998 年开始,国家启动了大型灌区节水改造工程,在改善灌区灌溉条件,提高灌区农业综合生产能力与灌溉水利用效率的同时,灌区内水文循环也有所改变。20 世纪 60 年代开始,国内外学者围绕着节水控盐和作物水肥高效利用及环境效应开展了大量研究。通过水量平衡法和遥感技术研究了区域耗水机理和估算灌区蒸发量;根据田间试验研究了高效节水灌溉技术


收稿日期:2020-03-15

基金项目:国家自然科学基金项目5153900551769024;“十三五”重点研发计划项目(2016YFC0400205

作者简介:史海滨,男,山西太谷人。教授,博士生导师,博士,主要从事节水灌溉原理及应用研究。E-mail: shi_haibin@sohu.com


的适用性,制定了节水控盐灌溉制度和合理的秋浇制度;揭示作物水氮耦合和有机无机肥配施耦合机制; 并展开了节水控盐对作物品质的影响等研究。经过几代人的努力,取得了丰硕的成果。

节水改造前,河套灌区年引水量为 52 亿m3,根据黄河水利委员会分配指标,引水量将减少到 40 亿 m3, 减20%以上。近些年,随着节水改造工程的实施, 灌区引水量大幅度减少,灌区土壤和地下水以及生态 环境发生新的变化。随着经济发展和种植结构的变化, 科学技术进步带来的农业种植方式的改变等,灌区可 持续发展、高效用水面临的问题也发生了变化。如何 缓解灌区用水矛盾,提高农作物产量和品质,掌握节 水灌溉对灌区生态环境的影响机理,对灌区农业可持 续发展和水资源优化配置具有重要作用。本文总结了 灌区 20002020 年的研究成果,对灌区面临的问题与需解决的科学问题进行了展望,旨在为现代灌区建 设提供参考。

1 河套灌区农业耗水

农业耗水是农田水循环和 SPAC 系统的核心,其影响因素涉及气象、土壤和作物等[1]。目前大量的学


灌溉排水学报http://www.ggpsxb.com


者对河套灌区不同区域、不同作物以及不同灌溉制度 条件下的生育期耗水量进行了研究[2],估算了不同作 物在不同水文年的耗水特征。对河套灌区较有特色的 套种、间作条件下作物间的耗水机制以及耗水竞争过 程进行了定量研究[3-4]。对高效节水灌溉技术和改进 地面灌溉等条件下耗水量进行了分析,如滴灌[5]、沟 [6]。对覆膜条件和施肥、滴灌等条件下的耗水进行 了研究[7-12]。针对河套灌区盐渍化程度高的特点,开 展了不同盐渍化程度对作物耗水的影响以及浅地下 水的潜水蒸发过程定量研究[13]。目前农田尺度的耗水 主要通过水量平衡方法进行计算,地下水通量主要依 据土壤水势结合土壤水动力学方法计算,生育期的耗 水主要基于作物系数法进行估算[14-15]。但近年来同位 素示踪、涡度相关[16]和神经网络模型[17]等现代化手段 也被大量用于作物耗水估算,另外通过模型率定再进 行耗水估算也被大量用于农田耗水估算,比如 Miao [18],戴佳信[19]。尽管掌握了作物生育期的耗水量有 助于制定作物的灌溉制度,但是河套灌区具有耕荒地 交错分布、作物插花种植、地下水埋深浅等特点,灌 溉水利用情况极为复杂,所以摸清田块尺度的水平衡 和耗水机制,对于河套灌区灌溉水复杂耗散路径计算 具有重要意义,任东阳等[20]在农渠尺度提出可用于简 便高效估算各植被地块实际腾发量的“上升下降法”, 并对地下水浅埋区的给水度进行计算探讨。武夏宁[21]以永联试验区为核心,通过水均衡法分析了永联 全区的水均衡要素构成以及土壤水和地下水的水分消 耗过程。另外,Liu [22]也基于水均衡法评价了解放闸灌域浅地下水对蒸散耗水的影响和贡献。尽管目前 对于灌域和灌区耗水量的确定可以根据引排水量差进 行计算,但受引排水量的测试精度限制,也难以区分 不同地类的耗水情况。准确确定区域耗水规律对于灌 区水量分配和调配等都具有重要意义,目前采用遥感 技术估算灌区蒸散研究已经成为研究热点,比如利用 融合算法[23]MODIS 影像与实测资料[24]、蒸散发模型

HTEM[25]SEBS[26]MODIS 影像与陆地表面能量平衡模型[27]等估算灌域蒸散发量。解决地面观测与遥感估测之间的空间匹配问题、遥感数据的融合问题、针对不同尺度建立一个完全统一可靠的蒸散发模型, 对于蒸散发研究具有积极的推动作用。

目前对河套灌区不同尺度耗水过程从试验、模型等方面都进行了大量研究,但是河套灌区生育期地下水变动大,不同区域地下水矿化度差异大,地下水对作物耗水的影响大。由于灌区作物插花种植,率定的遥感模型在不同区域尺度应用尚需要进一步率定。未来河套灌区不同尺度耗水模型精度的提高,特别是区域耗水估算方法和手段进一步成熟对于河套灌区合

2


理用水具有重要意义。

2 高效节水灌溉理论

2.1 地面灌溉

地面灌溉是河套灌区主要的灌水方式,占灌区90%以上,但存在畦沟长、田面平整度差、灌溉制度 不合理、农机效率低等一系列问题。由于灌区畦田宽 度、面积普遍较大,使得灌区灌水效率偏低[28-31]。针 对现状,开展了畦、沟灌溉条件下的入渗规律、基本 参数和水分利用效率研究,如 Selle [32]根据土壤含水率估算 Richards 方程所需土壤水力及作物参数,估算充分灌溉条件下的深层渗漏,结合水动力学方程、零惯量模型对其灌水效果进行模拟;乔冬梅等[33]根据 带有作物根系吸水项的垂向一维土壤水运动方程,把 人工神经网络技术成功引入根系吸水模型的建立中, BP 神经网络根系吸水模型对盐渍化地区油料向日葵根系吸水速率的模拟具有较高的精度。Valipour [34] 通过VB 编程确定沟灌土壤水分分布曲线的最佳方程, 利MATLAB 遗传算法获得最佳土壤入渗参数;郑和祥等[35]提出利用畦灌水流推进消退实测资料及模 型模拟确定土壤入渗参数,并绘制出河套灌区不同土 壤类型下的入渗参数分布曲线。随着灌区节水改造项 目实施,农田基础设施得到改善,传统常规平地已难 以满足实行地面精细灌溉的要求,激光平地技术作为 实现土地精细平整、提高地面灌溉水利用率的高效手 段,受到越来越多关注,范雷雷等[36]发现激光平地后 畦田微地形趋于平缓,田面起伏状况显著改善;白寅 祯等[37]以永济灌域为核心评价了激光平地和缩宽缩 块对农田灌水效果及作物水分利用效率的影响;对灌 溉设计方案进行优选是决策过程中必不可少的环节 之一,Miao [38]结合 ISAREGSIRMOD 模型提出 了对灌区畦、沟灌溉方法和技术要素的模拟优化,并 且采用 SADREG 模型与多目标优化相结合的方法, 从节水及经济效益二方面对灌溉方案进行综合评价, 初步确实适宜灌水技术要素组合。

灌区地面灌溉仍会是主要的灌溉方式,但其发展仍存在诸多问题,需进一步强化。以往研究成果对于农业机械效率关注不多,造成推广难度大。随着灌区渠系系统日益配套完善,畦田长度基本固定的特点更加突出,特定条件下的地面灌溉技术发展迫切需要新的理论支撑与推进。

2.2 膜下滴灌

膜下滴灌等高效节水灌溉技术开始在河套灌区 应用,可较畦灌明显提高灌水效率和作物产量,随着 研究的深入,逐渐开展了膜下滴灌土壤水盐热迁移规 律、作物耗水规律及灌溉制度的制定等方面的研究[39]


史海滨 等:内蒙古河套灌区节水灌溉与水肥高效利用研究展望


孙贯芳等[40]建议采用生育期滴灌和非生育期洗盐灌溉双重调控灌区土壤盐分;李熙婷等[41]利用 Jensen 模型建立膜下滴灌玉米水分生产函数,掌握玉米耗水规律;杜斌等[42]通过 Penman-Monteith 法和水量平衡法对膜下滴灌作物系数进行修正,优化灌溉制度;于健等[43]Dabach [44]基于HYDRUS-2d 等模型模拟了不同土质情况下滴灌湿润体迁移、水分入渗以及根系吸水等过程;张作为等[45]、龚雪文等[46]提出将膜下滴灌与间作套种结合起来,分析了玉米/番茄膜下滴灌条件下间作土壤水盐热运移规律,并运用同位素标定、模型模拟等方法对其水盐分布进行模拟研究;但由于不同间作作物耗水规律、根系吸水能力等各不相同, 导致滴灌间作系统水盐迁移在时空分布上存在差异, 在后续滴灌研究中需考虑河套灌区地下水埋深、根系吸水以及种植结构等诸多工况进行补充研究。受灌溉间歇期长等制约,滴灌等高效节水灌溉技术在河套灌区的应用受到限制,加之土壤盐渍化的影响,滴灌技术的应用有许多理论与技术尚待进一步研究和拓展。

由于河套灌区较大,引用黄河水灌溉间歇期长, 且灌溉不能适时,开拓多种水源成为灌区滴灌技术的应用前提,毛威等[47]基于 SaltMod 模型建立井渠结合膜下滴灌水盐均衡模型,并引入含水层侧向交换量对模型进行改进;周立峰等[48]采用滴水穿透时间法分析了不同覆膜条件下微咸水滴灌对盐渍化农田土壤斥水性的影响;有学者结合 SWAP 模型初步确定了微咸水滴灌时的灌溉水临界矿化度、灌水量及灌水年限等参数指标[49-51]。河套灌区高效节水灌溉技术应用尚处于起步阶段,劣质水灌溉研究还很不充分,许多内容有待进一步的分析和探讨。

3 节水控盐灌溉制度

3.1 主要作物灌溉制度

作物非充分灌溉制度研究成果很多,陈亚新等[52] 将非线性模型中的非线性目标线性化来解决非线性规划模型问题。孔东等[53]建立了含盐土壤节水灌溉作物--盐响应模型,并基于 SWAP 模型建立了 3 种不同盐渍化程度土壤的最优节水灌溉制度;肖红[54]应用遗传算法研究农业规划下灌溉制度优化。崔远来等[55] 用随机动态规划求解作物灌水量在作物生育阶段内的最优分配;付强等[56]将加速遗传算法加入了非充分灌溉制度的优化动态规划模型。张兵等[57]在动态规划模型中加入最优策略遗传算法解决了多种作物之间的水资源分配问题。随着计算机的普及,相继开发了FAO 推荐的单作物系数法模型 ISAREG[58],双作物系数模型 SIMDual-Kc 模型[59],且在全世界范围内得到了广泛应用。史海滨等[39]在多年野外试验的基础上,


探索了SPAC 系统复杂的水盐响应机制和作物缺水性信号与缺水状况的定量诊断方法,建立了盐渍化地区作物水盐胁迫响应模型,提出了节水防盐双重目标的灌溉管理模式,对制定盐渍化地区节水控盐的灌溉制度具有重要的理论和实际指导意义。

石贵余等[60]利用 ISAREG,以 FAO 推荐的作物系数制定了河套灌区春小麦、玉米、葵花和甜菜的 充分灌溉与非充分灌溉制度方案。郑和祥[61]、戴佳 信等[62]、朱丽等[63]对灌区广泛采用的小麦套种玉米、小麦套种葵花的作物系数进行了估算,模拟和优化了 充分和非充分灌溉制度,得到了不同灌溉制度下作物 水分生产函数。Miao [64]采用统计参数系统性地率定和检验了灌区主要作物的作物系数,并对现状灌溉 制度进行了评价和优化,结果表明由于灌区供水主要 取决于黄河来水和输配水制度,导致供水同作物需水 不匹配,另外,田间传统灌水技术效率低,再加上淋 洗盐分的需要,毛灌水量远远大于所需灌溉量[65],因 此,水分胁迫与过度灌溉并存是灌区现状灌溉制度的 基本特征。从优化的灌溉方案模拟结果来看,水分生 产率同增产增值二者呈负相关,水分生产率大的灌溉 制度产量或产值低,而增产增值的方案水分利用率低, 经济上难以共赢[38];另外,灌区作物生育期地下水补 给占作物总蒸散量约 30%~40%[64],而随着节水改造的大规模实施,地下水位逐年下降导致地下水补给比 例下降,减少的水量需要通过加大每次的灌水量来补 充,又造成引水量增加;在气候变化的大背景下,作 物需水量也在随之变化[66-67],且在不同水文年中更为 明显。

3.2 滴灌灌溉制度

随着灌区水资源紧缺,节水灌溉迅速发展,膜下 滴灌面积不断增加,针对滴灌灌溉制度开展的研究较 多,叶志勇等[68]通过设计 9 个不同灌溉定额和滴水次数的水分处理,得到了当地番茄最佳的膜下滴灌灌溉 制度。杜斌等[69]研究膜下滴灌灌溉制度,表明膜下滴 灌玉米、葵花较传统灌溉分别节水 12.7%4.5%; 孙贯芳等[40]研究表明不同滴灌制度下盐分趋于膜外 地表积聚,需要配合非生育期洗盐才能达到较好效果, 但膜下滴灌盐分累积到何种程度洗盐灌溉及具体合 理的洗盐灌溉制度还需进一步深入研究。姬祥祥等[70] 结合灌区实际后建议以地下水量水质不同进行分区, 结合典型土壤、作物(蔬菜瓜果和其他经济作物、水量、水质1~22~33~5 g/L、产量产值、作物 耗水规律以及土壤水热盐耦合迁移机制来研究并优 化膜下滴溉制度。

3.3 秋浇灌溉制度

秋浇灌溉是河套灌区一种传统的洗盐压盐灌溉


灌溉排水学报http://www.ggpsxb.com


制度,其用水量较大,秋浇制度的研究关系到灌区的节水控盐的总目标能否实现。秋浇制度除涉及灌溉水量与灌溉时间外,还与土壤冻融过程密切相关,机理更加复杂,直接影响到翌年的土壤墒情和次生盐碱化问题。李瑞平等[71]采用 SHAW 模型对不同秋浇量的冻融过程水盐动态进行模拟,确定轻中重度盐渍化土壤,秋浇定额范围分别为: 142~183180~200 200~225 mm,并给出了建议的秋浇日期。罗玉丽等[72] 通过对不同秋浇定额灌溉条件下春播前土壤水盐条件、土壤的脱盐效果和增水效果的对比分析,提出内蒙古引黄灌区基于节水的适宜秋浇定额为 1 500 m3/hm2。彭振阳等[73-74]采用田间试验的方法对秋浇条件下土壤的盐分运动规律进行了分析。结果表明,秋浇在短期内只是将上层土壤盐分淋洗至下层,冻结初期是盐分从田间排走的主要时期;主要的返盐过程, 则发生在消融期秋浇不仅是冲洗土壤盐分、维持翌年土壤墒情,还对土壤结构、病虫害防治有关,特别还涉及土壤的冻融过程,其机理更加为复杂,需进一步深化研究。

目前水资源短缺和土壤盐渍化仍为河套灌区可持续发展面临的两大问题,灌溉制度优化成果一般都以田间节水为主,而同样的灌溉制度在田间尺度和区域尺度发挥的节水效益不同,如何从全局利益最大化为目标而进行种植结构调整和作物灌溉制度优化是下一步的研究重点。受试验条件和模型优化限制,目前虽然灌区灌溉制度研究成果较多,但差异性明显。今后的研究需更加关注节水控盐需求和亚洲第一大一首制灌区灌溉周期长,灌溉不适时的特点,在完善灌溉水优化调度基础上,寻求切实可行的优化灌溉制度。

4 盐渍化灌区水氮有机无机肥耦合机制

4.1 基于农田生态环境安全的水氮耦合

水是作物进行光合作用的基本原料,同时也是氮素进入作物体和农田环境的主要载体;氮素是作物生长发育所必需的营养元素,其在不同环境中的迁移转化与水分状况密切相关。有研究通过多元多次回归模型进行水氮配施方案寻优,以获取最优方案。设置不同的膜下滴灌水氮供应模式,构建了基于多元多次回归模型的沙区可降解地膜覆盖下的水氮耦合模型,提出了干旱区可降解地膜覆盖下的水氮优化供应方案

[75]。针对灌区土壤盐渍化程度高,研究以光能高效利

用和作物产量为依据,基于多元回归模型构建了不同程度盐渍土壤下产量的水氮耦合模型,揭示了光能利用率及作物产量对不同盐渍土壤水氮调控的响应规律[76-80]。针对盐渍土壤对作物产量及土壤微生物活性的影响现状,通过在不同盐渍土壤上设置不同施氮水

4


平,阐明了不同盐渍化程度土壤下作物产量及土壤微生物对氮肥的响应机理[81]

多年来,河套灌区为追求高产而过量灌水并大量施用氮肥,导致氮肥增产效益明显下降且有大量的水溶性或气态氮损失,造成了地下水硝酸盐污染、土壤酸化、地表水体富营养化及温室效应等一系列严重的生态环境问题[82-87]。为减少氮素损失并减轻农田面源污染,寻求一种节水、控肥、稳产的水氮管理模式, 设置不同的水氮处理或间作模式下不同的施氮水平, 得到了各类条件下能够兼顾稳产、高效且环境友好的水氮管理模式[88-90]。盐渍化灌区的农业生产是一个易受多种因素影响的复杂过程,采用合理的水氮耦合模式对保障灌区的粮食安全、农业可持续发展以及生态环境安全至关重要。由于盐渍化程度、土壤基础条件、耕作措施等因素的不同,导致同一作物的水氮耦合模式在整个灌区内的适用性不高。因此,研究不同盐渍化程度、土壤基础条件及耕作措施对水氮耦合效应的差异性影响,是优化水氮耦合模式和保障灌区农业可持续发展的基础。

目前,对于盐渍化灌区作物的水氮耦合效应的研究大多数集中于不同水氮管理模式下作物高产高效的作用机制、土壤氮素转化过程的损失机制等。关于盐渍化土壤碳氮的代谢、转运、循环过程对不同水氮管理模式的响应机理阐述及过程模拟等方面的研究较为少见。其中,无人机在盐渍化灌区农业水氮管理模式中的应用技术有待于突破。因此,进一步研究不同水氮耦合模式下盐渍化土壤的碳氮循环过程及代谢机理,同时实现无人机在盐渍化灌区水氮耦合模式优化中的应用,对提高农业资源利用效率及推动现代化农业发展具有重要意义。

4.2 配施有机无机肥对灌区农业生态系统的影响

土壤盐渍化和养分匮乏是限制灌区作物生产力的重要因素。有机无机肥配施对盐渍土理化性质及作物生产力的影响很大,有机肥被认为是盐渍化农田改盐增肥的有效措施[91]。施入有机肥可以综合改善盐渍土物理、化学和生物特性[92]。有机肥在盐渍土中能加速钠的浸出,降低交换性钠的量及土壤电导率[93]。同时,施入有机肥可以提高土壤养分量、有机氮丰度、土壤酶活性及促进作物生长[94]。配施有机肥对于提供氮素利用效率及作物增产方面效果明显[95]

有机肥对于减少氮素面源污染也具有重大意义,合理的有机肥施入量可以有效减少 NH3N2O 等气体的损失[96],而且施入有机肥能够增加土壤活性有机碳量和团聚体粒径,提高阳离子代换量,增加对硝态氮的固持作[97],从而减少氮素淋溶损失,对于缓解灌区下游乌梁素海水体富营养化也起到重要作用。有机废弃物的再利


史海滨 等:内蒙古河套灌区节水灌溉与水肥高效利用研究展望


用对于减少污染及实现化肥使用零增长极为重要。然而相对于化肥来说,有机氮素转化过程更为复杂,因为从这些有机物质中释放出的氮依赖于微生物介导的氮矿化过程,这些过程受环境条件、土壤性质和有机肥特性的影响[98]。而在受盐影响的土壤中,盐分是影响土壤氮素供应和转换转化的主要因素[99-100]

目前,大多数研究仍停留在有机无机肥不同用量或配比的施用对作物产量与品质、农田氮素损失的影响,并没有深入探讨影响有机肥氮素矿化过程的各类因素。尤其是关于盐渍化土壤上有机无机肥配施后的矿化特性的研究更为少见。因此,有必要继续探索有机无机配施后土壤中氮素矿化潜力对不同因素的响应程度,以实现增产、节肥且生态环境安全的目的。

5 盐渍化土壤节水对作物品质的影响

近年来在非盐渍化地区围绕节水灌溉技术[101]、水氮互作[102]、施肥模式等[103]对玉米籽粒品质的影响进行了研究。再生水灌溉对玉米品质影响方面也开展了一定的研究[104]。在盐渍化灌区主要开展了不同情景下春玉米灌溉制度、生理生态指标和产量,鲜少涉及玉米品质[105-106]

小麦为我国主要粮食作物,我国学者对华北地区冬小麦产量和品质进行灌水控制下限研究,提出华北地区冬小麦优质高效节水灌溉制度[107]。在黄淮海平原,考虑盐分累积及冬小麦产量品质进行了井渠结合灌溉模式优选研究[108]。同时,开展了节水灌溉技术[109] 及灌溉水量对小麦品质[110]的影响研究工作,在河套灌区的研究未见报道。

番茄是河套灌区主要经济作物之一,目前针对灌溉、施肥等管理措施对温室番茄品质的影响开展了大量的研究工作[111-112]。但在河套灌区盐渍化土壤上,大田种植模式下,节水控盐对番茄品质影响研究还很少。

向日葵属耐盐物种,适宜在盐渍化土壤播种, 同时也是天然植物油脂和蛋白质的重要来源。向日葵品质除受遗传和品种的影响外,也受外界环境条件的影响,主要包括根区水土环境、气候、灌溉和施肥等[113-116]。在河套灌区含盐土壤种植油料向日葵, 实施不同水盐处理,结果表明,其光合速率总体呈现下降趋势,产量降低[117-118],向日葵籽仁中粗脂肪量与蛋白质量呈显著负相关关系,当充分满足向日葵生育期内水分需求时,有利于向日葵籽仁中粗脂肪的合成,但不利于蛋白质的合成[119-120]。在播种时施氮量一致的前提下,油葵现蕾开花阶段追施氮肥会促进籽仁中蛋白质的合成[121]。微咸水调亏灌溉下,轻度水分调亏会增加油葵的含油率和生育酚量,但中度水分调亏和灌水盐分增加则会显著减小其量,水盐协同调


控表现出互相制约的效应[122]

综上所述,今后针对河套灌区小麦、玉米、向日葵、番茄等主要粮经作物,应深入开展节水控盐提质研究,深入揭示在盐渍化土壤上水肥管理措施对粮经作物品质影响的生理机制,并构建水---作物品质动力学模型,从水、肥、盐协同角度对作物品质进行调控研究。

6 结论与展望

内蒙古河套灌区是我国重要的农业规模化生产和商品粮、油基地,是引黄河水灌溉形成的荒漠绿洲, 在生态优先、绿色发展的理念下,灌区的农业生产模式也需要重新被认识。随着引水量的减少、种植结构的改变、节水改造工程实施,灌区农田水土环境和生态环境都发生了新的变化。如何缓解灌区用水矛盾、提高农作物产量和品质,保障灌区生态环境健康是灌区发展的首要前提。基于已有的研究成果,今后应在以下方面加强研究:

1) 高效节水灌溉技术的应用

随着灌区渠系系统日益配套完善,地面灌溉技术仍将是灌区近期主要的灌溉方式,迫切需要新的理论支撑与推进特定条件下的地面灌溉技术。同时随着经济发展的需要,对于高频灌溉的经济作物种植,高效节水灌溉技术应用迫在眉睫。对于一首制这样的特殊灌区,除了高效节水技术本身的适用性研究外,多种水源的开发利用是发展高效节水灌溉的前提,但目前微咸水利用、地下水资源调配、地下水位控制等还有待进一步探讨。

2) 优化灌溉制度与作物品质提升的研究

灌溉制度成果很多,在田间尺度和区域尺度也不同, 如何从全局利益最大化为目标而进行合理的种植结构 调整和作物灌溉制度优化是下一步的研究重点。对河套 灌区,应深入展开小麦、玉米、向日葵、番茄等主要粮 经作物节水控盐提质研究,深入揭示在盐渍化土壤上水 肥管理措施对粮经作物品质影响的生理机制。

3) 土壤碳氮循环和氮素矿化研究及现代化技术的应用

进一步研究不同水氮耦合模式下盐渍化土壤的 碳氮循环过程及代谢机理和有机无机肥配施后土壤 中氮素矿化潜力对不同因素的响应程度,以实现增产、节肥且生态环境安全的效果,同时实现无人机在盐渍 化灌区水氮耦合模式优化中的应用,对提高农业资源 利用效率及推动现代化农业发展具有重要意义。

致谢:感谢王国帅、孙亚楠、崔佳琪、范雷雷、代丽萍、

周慧等在文献查阅中给予的大力帮助。

5


参考文献:


灌溉排水学报http://www.ggpsxb.com

Management, 2017, 179: 122-131.

[11] WANG X K, LI Z B, XING Y Y. Effects of mulching and nitrogen on soil


[1] 霍再林, 史海滨, 陈亚新, . 参考作物潜在蒸散量的人工神经网络

模型研究[J]. 农业工程学报, 2004 20(1): 40-43.

HUO Zailin, SHI Haibin, CHEN Yaxin, et al. Research of artificial neural network model for reference crop evapotranspiration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 40-43.

[2] 任东阳. 灌区多尺度农业与生态水文过程模拟[D]. 北京: 中国农业大学, 2018.

REN Dongyang. Multi-scale modeling of the agro-eco-hydrological process in irrigation district[D]. Beijing: China Agricultural University, 2018.

[3] LI X Y, ŠIMǓNEK J, SHI H B, et al. Spatial distribution of soil water, soil temperature, and plant roots in a drip-irrigated intercropping field with plastic mulch[J]. European Journal of Agronomy, 2017, 83: 47-56.

[4] 李仙岳, 陈宁, 史海滨, . 膜下滴灌玉米番茄间作农田土壤水分分布特征模拟[J].农业工程学报, 2019, 35(10): 50-59.

LI Xianyue, CHEN Ning, SHI Haibin et al. Soil moisture distribution characteristics simulation of maize-tomato intercropping field with drip-irrigated under plastic mulch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 50-59.

[5] LI X Y, SHI H B, ŠIMǓNEK J, et al. Modeling soil water dynamics in a drip-irrigated intercropping field under plastic mulch[J]. Irrigation Science, 2015, 33(4): 289-302.

[6] 王康三. 宽垄沟灌条件下节水效应试验研究[D]. 郑州: 华北水利水电大学, 2017.

WANG Kangsan. Experimental study on water saving effect under the condition of wide ridge and furrow irrigation[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017.

[7] GONG D Z, MEI X R, HAO W P, et al. Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields[J]. Agricultural Water Management, 2017, 181(Complete): 23-34.

[8] GONG D Z, MEI X R, HAO W P, et al. Comparison of multi-level water use efficiency between plastic film partially mulched and non-mulched croplands at eastern Loess Plateau of China[J]. Agricultural Water Management, 2017, 179: 215-226.

[9] ALI S, JAN A, ZHANG P, et al. Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China[J]. Agricultural Water Management, 2016, 178: 1-11.

[10] FAN Y Q, DING R S, KANG S Z, et al. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland[J]. Agricultural Water

6


temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China[J]. Agricultural Water Management, 2015, 161: 53-64.

[12] ZHANG H M, XIONG Y W, HUANG G H, et al. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District[J]. Agricultural Water Management, 2017, 179: 205-214.

[13] REN D Y, XU X, HUANG Q Z, et al. Analyzing the role of shallow groundwater systems in the water use of different land-use types in arid irrigated regions[J]. Water, 2018, 10(5): 634.

[14] KANG S Z, GU B J, DU T S, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239-254.

[15] ZHANG B Z, KANG S Z, LI F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural and Forest Meteorology, 2008, 148(10): 1 629-1 640.

[16] LIU S M, XU Z W, ZHU Z L, et al. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China[J]. Journal of Hydrology, 2013, 487: 24-38.

[17] 霍再林, 史海滨, 陈亚新, . ET0 的人工神经网络模型与评估研究

[J]. 水资源与水工程学报, 2004, 15(2): 5-9.

HUO Zailin, SHI Haibin, CHEN Yaxin, et al. Artificial neural network model of ET0 and evaluation[J]. Journal of Water Resources and Water Engineering, 2004, 15(2): 5-9.

[18] MIAO Q F, ROSA R D, SHI H B, et al. Modeling water use, transpiration and soil evaporation of spring wheat-maize and spring wheat-sunflower relay intercropping using the dual crop coefficient approach[J]. Agricultural Water Management, 2016, 165: 211-229.

[19] 戴佳信. 河套灌区套种作物需水量与灌溉制度试验研究[C]//现代节水高效农业与生态灌区建设(上.中国农业工程学会, 2010:596-605. DAI Jiaxin. The Experimental Research of Interplanting Corp Water

Requirement and Irrigation Schedule in Hetao Irrigation District in Inner Mongolia[C]. Chinese Society of Agricultural Engineering, 2010: 596-605.

[20] 任东阳, 徐旭, 黄冠华, . 河套灌区典型灌排单元农田耗水机制研[J]. 农业工程学报, 2019, 35(1): 98-105.

REN Dongyang, XU Xu, HUANG Guanhua, et al. Irrigation water use in typical irrigation and drainage system of Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 98-105.

[21] 武夏宁, 王修贵, 胡铁松, . 河套灌区蒸散发分析及耗水机制研究

[J]. 灌溉排水学报, 2006, 25(3): 1-4.


史海滨 等:内蒙古河套灌区节水灌溉与水肥高效利用研究展望


WU Xianing, WANG Xiugui, HU Tiesong, et al. Research on regional evapotranspiration and water consumption mechanism[J]. Journal of Irrigation and Drainage, 2006, 25(3): 1-4.

[22] LIU Z Y, CHEN H, HUO Z L, et al. Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table[J]. Agricultural Water Management, 2016, 171: 131-141.

[23] 白亮亮, 蔡甲冰, 刘钰, . 数据融合在灌区蒸散发空间降尺度的验证与应用[J]. 农业机械学报, 2017, 48(4): 215-223.

BAI Liangliang, CAI Jiabing, LIU Yu, et al. Spatial downscaling of evapotranspiration in Large irrigation area based on data fusion algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 215-223.

[24] 达日玛. 基于 MODIS 数据的区域蒸散发量遥感估算及其应用[D]. 呼和浩特: 内蒙古师范大学, 2010.

DA Rima. A study on regional evaportranspiration estimation of remote sensing and its application based on MODIS data- a case of Bayannaoer city[D]. Huhhot: Inner Mongolia Normal University, 2010.

[25] 蒋磊. 干旱区灌区尺度灌溉及作物水分利用效率遥感评价方法[D]. 北京: 清华大学, 2016.

JIANG Lei. Remote sensing-based evaluation of irrigation efficiency and crop water use efficiency over irrigation district in arid region[D]. Beijing: QingHua University, 2016.

[26] 白亮亮. 基于多源遥感数据的灌区农田蒸散发和土壤墒情反演及应[D]. 北京: 中国水利水电科学研究院, 2017.

BAI Liangliang. Inversion and application of agriculture evapotranspiration and soil moisture in irrigation district based on multi-source remote sensing data[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017.

[27] 高瑞睿. 基于遥感土壤含水量和蒸散发信息的灌溉面积识别技术研究与应用[D]. 兰州: 兰州交通大学, 2018.

GAO Ruirui. Research and application of irrigation area identification technology based on remote sensing soil moisture content and evapotranspiration[D]. Lanzhou: Lanzhou Jiaotong University, 2018.

[28] 史海滨, 李仙岳, 李瑞平. 内蒙河套灌区粮食作物综合节水技术集成模式研究[C]. 中国水利学会学术年会, 2011.

SHI Haibin, LI Xianyue, LI Ruiping. Study on Integrated Mode of Integrated Water-saving Techniques for Food Crops in Hetao Irrigation District of Inner Mongolia[C]. Chinese Hydraulic Society Academic Conference, 2011.

[29] 吴普特. 现代高效节水灌溉设施[M]. 北京: 化学工业出版社, 2002. WU Pute. Xiandai Gaoxiao Jieshui Guangai Sheshi[M]. Beijing: Chemical Industry Press, 2002.

[30] 史海滨. 内蒙干旱区粮食作物综合节水集成技术与模式研究[C]// 中国农业工程学会 2011 年学术年会论文集. 中国农业工程学会, 2011: 787-795.


SHI Haibin. Study on Integrated Water-saving Technology and Model of Grain Crops in Arid Area of Inner Mongolia[C]// Proceedings of the 2011 Chinese Academy of Agricultural Engineering Annual Conference, 2011: 787-795.

[31] 徐睿智, 魏占民, 夏玉红, . 激光精细平地对畦田灌水质量的影响及节水效果分析[J]. 灌溉排水学报, 2012, 31(2): 6-9.

XU Ruizhi, WEI Zhanmin, XIA Yuhong, et al. Effects of laser precision land leveling on border irrigation and its water saving performance[J]. Journal of Irrigation and Drainage, 2012, 31(2): 6-9.

[32] SELLE B, MINASNY B, BETHUNE M, et al. Applicability of Richards' equation models to predict deep percolation under surface irrigation[J]. Geoderma, 2011, 160(3/4): 569-578.

[33] 乔冬梅, 史海滨, 薛铸. 盐渍化地区油料向日葵根系吸水模型的建立[J]. 农业工程学报, 2006, 22(8): 44-49.

QIAO Dongmei, SHI Haibin, XUE Zhu. Development of root-water-uptake model for oil sunflower in saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(8): 44-49.

[34] VALIPOUR M, MONTAZAR A A. Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming[J]. Australian Journal of Basic and Applied Sciences, 2012, 6(6): 132-137.

[35] 郑和祥, 史海滨, 朱敏, . 基于 SIRMOD 模型的畦灌入渗参数估算及灌溉模拟[J]. 农业工程学报, 2009, 25(11): 29-34.

ZHENG Hexiang, SHI Haibin, ZHU Min, et al. Estimation of infiltration parameters for border irrigation based on SIRMOD method and modelling of border irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(11): 29-34.

[36] 范雷雷, 史海滨, 李瑞平, . 河套灌区畦灌灌水质量评价与优化

[J]. 农业机械学报, 2019, 50(6): 315-321, 337.

FAN Leilei, SHI Haibin, LI Ruiping, et al. Evaluation and optimization of border irrigation performance in Hetao irrigation district[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(6): 315-321, 337.

[37] 白寅祯, 魏占民, 张健, . 基于 WinSRFR 软件的河套灌区水平畦田规格的优化[J]. 排灌机械工程学报, 2016, 34(9):823-828.

BAI Yinzhen, WEI Zhanmin, ZHANG Jian, et al. WinSRFR software-based optimization of horizontal border patch size in Hetao Irrigation District[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(9): 823-828.

[38] MIAO Q F, SHI H B, GONÇ ALVES J M, et al. Basin irrigation design with multi-criteria analysis focusing on water saving and economic returns: Application to wheat in Hetao, Yellow River Basin[J]. Water, 2018, 10(1): 67.

[39] 史海滨, 杨树青, 李瑞平. 作物水盐联合胁迫与水分高效利用研究

[M]. 北京: 中国水利水电出版社, 2009.

[40] 孙贯芳, 屈忠义, 杜斌, . 不同灌溉制度下河套灌区玉米膜下滴灌

7


灌溉排水学报http://www.ggpsxb.com


水热盐运移规律[J]. 农业工程学报, 2017, 33(12): 144-152.

SUN Guanfang, QU Zhongyi, DU Bin, et al. Water-heat-salt effects of mulched drip irrigation maize with different irrigation scheduling in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12): 144-152.

[41] 李熙婷, 田德龙, 郭克贞, . 膜下滴灌对小麦根系分布特征的影响

[J]. 排灌机械工程学报, 2016, 34(6): 545-552.

LI Xiting, TIAN Delong, GUO Kezhen, et al. Influence of mulch drip irrigation on wheat root distribution characteristics[J]. Drainage and Irrigation Machinery, 2016, 34(6): 545-552.

[42] 杜斌, 屈忠义, 于健, . 内蒙古河套灌区大田作物膜下滴灌作物系数试验研究[J]. 灌溉排水学报, 2014, 33(4): 16-20.

DU Bin, QU Zhongyi, YU Jian, et al. Experimental study on crop coefficient under mulched drip irrigation in Hetao irrigation district of Inner Mongolia[J]. Journal of Irrigation and Drainage, 2014, 33(4): 16-20.

[43] 于健, 杨金忠, 徐冰, . 内蒙古河套灌区三种水源形式滴灌发展潜[J]. 中国水利, 2015(19): 50-53.

YU Jian, YANG Jinzhong, XU Bing, et al. Potentiality of drip irrigation development for three types of water source in Hetao Irrigation Districts of Inner Mongolia[J]. China Water Resources, 2015(19): 50-53.

[44] DABACH S, LAZAROVITCH N, ŠIMŮNEK J, et al. Numerical investigation of irrigation scheduling based on soil water status[J]. Irrigation Science, 2013, 31(1): 27-36.

[45] 张作为, 史海滨, 李仙岳, . 河套灌区间作系统根系土壤水盐运移机理及间作优势研究[J]. 水利学报, 2017, 48(4): 408-416.

ZHANG Zuowei, SHI Haibin, LI Xianyue, et al. Research on the mechanism of water and salt transport in root soil and the advantage of intercropping system in Hetao irrigation district[J]. Journal of Hydraulic Engineering, 2017, 48(4): 408-416.

[46] 龚雪文, 李仙岳, 史海滨, . 番茄、玉米套种膜下滴灌条件下农田地温变化特征[J]. 生态学报, 2015, 35(2): 489-496.

GONG Xuewen, LI Xianyue, SHI Haibin, et al. The interplanting between tomato and maize of soil temperature dynamics under mulched drip irrigation[J]. Acta Ecologica Sinica, 2015, 35(2): 489-496.

[47] 毛威, 杨金忠, 朱焱, . 河套灌区井渠结合膜下滴灌土壤盐分演化规律[J]. 农业工程学报, 2018, 34(1): 93-101.

MAO Wei, YANG Jinzhong, ZHU Yan, et al. Soil salinity process of Hetao Irrigation District after application of well-canal conjunctive irrigation and mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 93-101.

[48] 周立峰, 杨荣, 冯浩. 微咸水膜下滴灌对盐碱化农田土壤斥水特征的影响[J]. 农业机械学报, 2019, 50(7): 322-332.

ZHOU Lifeng, YANG Rong, FENG Hao. Effect of mulched drip irrigation with brackish saline water on soil water repellency characteristics of saline-alkali field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 322-332.


[49] BELTRÁ N J M. Irrigation with saline water: Benefits and environmental impact[J]. Agricultural Water Management, 1999, 40(2/3): 183-194.

[50] MALASH N, FLOWERS T J, RAGAB R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production[J]. Agricultural Water Management, 2005, 78(1/2): 25-38.

[51] INCROCCI L, MALORGIO F, DELLA BARTOLA A, et al. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water[J]. Scientia Horticulturae, 2006, 107(4): 365-372.

[52] 陈亚新, 康绍忠. 非充分灌溉原理[M]. 北京: 中国水利水电出版社, 1995.

CHEN Yaxin, KANG Shaozhong. Principles of Deficit Irrigation [M]. Beijing: China Water Resources And Hydropower Press, 1995.

[53] 孔东. 含盐土壤节水灌溉下作物--盐响应关系及模型研究[D].

呼和浩特: 内蒙古农业大学, 2004.

KONG Dong. Study on crop response to soil water-salt and its modelling for saline soil under water-saving irrigation. [D]. Huhhot: Inner Mongolia Agricultural University, 2004.

[54] 肖红, 韩杰, 付强. 运用 RAGA 求解农业线性与非线性规划模型[J]. 农机化研究, 2002, 24(2): 30-32.

XIAO Hong, HAN Jie, FU Qiang. Explainig linear and nonlinear programing model by RAGA IN agriculture[J]. Journal of Agricultural Mechanization Research, 2002, 24(2): 30-32.

[55] 崔远来, 李远华. 作物缺水条件下灌溉供水量最优分配[J]. 水利学, 1997, 28(3): 37-42.

CUI YUANLAI\ LI YUANHUA. The optimal allocation of irrigation water with diversified crops under limited water supply[J]. Journal of Hydraulic Engineering, 1997, 28(3): 37-42.

[56] 付强, 王立坤, 门宝辉, . 推求水稻非充分灌溉下优化灌溉制度的新方法:基于实码加速遗传算法的多维动态规划法[J]. 水利学报, 2003, 34(1): 123-128.

FU Qiang, WANG Likun, MEN Baohui, et al. A new method of optimizing irrigation system under non-sufficient irrigation—multi-dimensional dynamic planning based on RAGA[J]. Journal of Hydraulic Engineering, 2003, 34(1): 123-128.

[57] 张兵, 袁寿其, 李红, . 基于最优保留策略遗传算法的玉米小麦优化灌溉模型研究[J]. 农业工程学报, 2005, 21(7): 25-29.

ZHANG Bing, YUAN Shouqi, LI Hong, et al. Multi-crop optimization irrigation model by genetic algorithms of best saving tactics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(7): 25-29.

[58] TEIXEIRA J L, PEREIRA L S, ISAREG. Development and testing of an irrigation scheduling model[J]. ICID Bulletin, 1992, 41(2): 29-48.

[59] ROSA R D, PAREDES P, RODRIGUES G C, et al. Implementing the


8


史海滨 等:内蒙古河套灌区节水灌溉与水肥高效利用研究展望


dual crop coefficient approach in interactive software. 1. Background and computational strategy[J]. Agricultural Water Management, 2012, 103: 8-24.

[60] 石贵余, 张金宏, 姜谋余. 河套灌区灌溉制度研究[J]. 灌溉排水学报, 2003, 22(5): 72-76.

SHI Guiyu, ZHANG Jinhong, JIANG Mouyu. Research of crop irrigation scheduling for Hetao irrigation district[J]. Journal of Irrigation and Drainage, 2003, 22(5): 72-76.

[61] 郑和祥. 河套灌区畦田节水改造关键技术和灌溉决策研究[D]. 呼和浩特: 内蒙古农业大学, 2009.

ZHENG Hexiang. Research on key technologies and irrigation decisions of water-saving improvement in furrow fields in hetao irrigation area [D]. Huhhot: Inner Mongolia Agricultural University, 2009.

[62] 戴佳信, 史海滨, 田德龙, . 内蒙古河套灌区主要粮油作物系数的确定[J]. 灌溉排水学报, 2011, 30(3): 23-27.

DAI Jiaxin, SHI Haibin, TIAN Delong, et al. Determined of crop coefficients of main grain and oil crops in Inner Mongolia Hetao irrigated area[J]. Journal of Irrigation and Drainage, 2011, 30(3): 23-27.

[63] 朱丽, 史海滨, 王宁, . 基于ISAREG 模型的小麦间作玉米优化灌溉制度研究[J]. 灌溉排水学报, 2012, 31(4): 26-31.

ZHU Li, SHI Haibin, WANG Ning, et al. Crop water requirement and optimization of irrigation system of intercrop wheat and maize by ISAREG model[J]. Journal of Irrigation and Drainage, 2012, 31(4): 26-31.

[64] MIAO Q F, ROSA R D, SHI H B, et al. Modeling water use, transpiration and soil evaporation of spring wheat-maize and spring wheat-sunflower relay intercropping using the dual crop coefficient approach[J]. Agricultural Water Management, 2016, 165: 211-229.

[65] MIAO Q F, SHI H B, GONÇ ALVES J M, et al. Field assessment of basin irrigation performance and water saving in Hetao, Yellow River Basin: Issues to support irrigation systems modernisation[J]. Biosystems Engineering, 2015, 136: 102-116.

[66] 王丽萍, 刘廷玺, 丁艳宏, . 河套灌区近 50 年气候变化特征及趋势分析[J]. 北京师范大学学报(自然科学版), 2016, 52(3): 402-407.

WANG Liping, LIU Tingxi, DING Yanhong, et al. Characteristics and tendency of climate change in the Hetao Irrigation District in the past 50 years[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(3): 402-407.

[67] WANG X M, LIU H J, ZHANG L W, et al. Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District[J]. Water Science and Engineering, 2014, 7(3): 250-266.

[68] 叶志勇, 郭克贞, 赵淑银, . 河套灌区加工型番茄膜下滴灌技术研[J]. 灌溉排水学报, 2011, 30(1): 110-112.

YE Zhiyong, GUO Kezhen, ZHAO Shuyin, et al. Mulched drip irrigation of processed tomato in Hetao irrigation district[J]. Journal of Irrigation and Drainage, 2011, 30(1): 110-112.

[69] 杜斌, 屈忠义, 于健, . 内蒙古河套灌区大田作物膜下滴灌作物系


数试验研究[J]. 灌溉排水学报, 2014, 33(4): 16-20.

DU Bin, QU Zhongyi, YU Jian, et al. Experimental study on crop coefficient under mulched drip irrigation in Hetao irrigation district of Inner Mongolia[J]. Journal of Irrigation and Drainage, 2014, 33(4): 16-20.

[70] 姬祥祥, 张体彬, 朱晓华, . 河套灌区膜下滴灌研究进展[J]. 节水灌溉, 2019(1): 92-95, 101.

JI Xiangxiang, ZHANG Tibing, ZHU Xiaohua, et al. Advances in the study of mulched drip irrigation in Hetao irrigation district[J]. Water Saving Irrigation, 2019(1): 92-95, 101.

[71] 李瑞平, 史海滨, 赤江刚夫, . 基于 SHAW 模型的内蒙古河套灌区秋浇节水灌溉制度[J]. 农业工程学报, 2010, 26(2): 31-36.

LI Ruiping, SHI Haibin, TAKEO Akae, et al. Scheme of water saving irrigation in autumn based on SHAW model in Inner Mongolia Hetao irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2): 31-36.

[72] 罗玉丽, 姜秀芳, 曹惠提, . 内蒙古引黄灌区适宜秋浇定额研究

[J]. 水资源与水工程学报, 2012, 23(3): 131-134.

LUO Yuli, JIANG Xiufang, CAO Huiti, et al. Research on the suitable autumnal irrigation quota in Yellow River irrigation areas of Inner Mongolia [J]. Journal of Water Resources and Water Engineering, 2012,23 (3) : 131-134.

[73] 彭振阳, 伍靖伟, 黄介生. 内蒙古河套灌区局部秋浇条件下农田水盐运动特征分析[J]. 水利学报, 2016, 47(1): 110-118.

PENG Zhenyang, WU Jingwei, HUANG Jiesheng. Water and salt movement under partial irrigation in Hetao Irrigation District, Inner Mongolia[J]. Journal of Hydraulic Engineering, 2016, 47(1): 110-118.

[74] 彭振阳, 黄介生, 伍靖伟, . 秋浇条件下季节性冻融土壤盐分运动规律[J]. 农业工程学报, 2012, 28(6): 77-871.

PENG Zhenyang, HUANNG Jiesheng, WU Jingwei, et al. Salt movement of seasonal freezing-thawing soil under autumn irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 77-81.

[75] 李仙岳, 丁宗江, 闫建文, . 沙区降解膜覆盖下滴灌农田水氮交互效应与模型研究[J]. 农业机械学报, 2018, 49(7): 261-270.

LI Xianyue, DING Zongjiang, YAN Jianwen, et al. Interaction effect and model of water and nitrogen under degradable film mulching in drip irrigated sandy farmland[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(7): 261-270.

[76] 徐昭, 史海滨, 李仙岳, . 水氮限量供给对盐渍化农田玉米光能利用与产量的影响[J]. 农业机械学报, 2018, 49(12): 281-291.

XU Zhao, SHI Haibin, LI Xianyue, et al. Effect of Limited Irrigation and Nitrogen Rate on Radiation Utlization Efficiency and Yield of Maize in Salinization Farmland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 281-291.

[77] 徐昭, 史海滨, 李仙岳, . 不同程度盐渍化农田下玉米产量对水氮调控的响应[J]. 农业机械学报, 2019, 50(5): 334-343.


9


灌溉排水学报http://www.ggpsxb.com


XU Zhao, SHI Haibin, LI Xianyue, et al. Response of maize yield to irrigation and nitrogen rate in different salinization farmlands[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(5): 334-343.

[78] 闫建文, 史海滨, 李仙岳, . 轻度盐渍化土壤水氮对玉米光合特性及产量的影响[J]. 水土保持学报, 2014, 28(3): 277-284, 289.

YAN Jianwen, SHI Haibin, LI Xianyue, et al. Effects of water and nitrogen conditions on the photosynthetic characteristics and yield of maize in slightly salted soil[J]. Journal of Soil and Water Conservation, 2014, 28(3): 277-284, 289.

[79] 闫建文, 史海滨. 氮肥对不同含盐土壤水盐和小麦产量的影响[J].

灌溉排水学报, 2014, 33(4): 50-53.

YAN Jianwen, SHI Haibin. Effect of nitrogen fertilizer on yield of wheat and soil moisture and salinity of different salinity soils[J]. Journal of Irrigation and Drainage, 2014, 33(4): 50-53.

[80] 田德龙, 史海滨, 闫建文, . 盐分胁迫下水、肥对向日葵光合特性的影响[J]. 灌溉排水学报, 2012, 31(5): 73-77.

TIAN Delong, SHI Haibin, YAN Jianwen, et al. Effects of water and fertilizer on sunflower photosynthetic characteristics under the salt stress[J]. Journal of Irrigation and Drainage, 2012, 31(5): 73-77.

[81] 符鲜, 杨树青, 刘德平, . 施氮水平对河套灌区套作小麦-玉米土壤微生物量碳、氮的影响研究[J]. 生态环境学报, 2018, 27(9):

1 652-1 657.

FU Xian, YANG Shuqin, LIU Deping, et al. Effects of nitrogen application on soil microbial biomass carbon and nitrogen of intercropping wheat-corn in Hetao Irrigation Area[J]. Ecology and Environmental Sciences, 2018, 27(9): 1 652-1 657.

[82] ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences, 2013, 110(21):

8 375-8 380.

[83] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3 041-3 046.

[84] 蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题

[J]. 植物营养与肥料学报, 2014, 20(1): 1-6.

CAI Zucong, YAN Xiaoyun, ZHU Zhaoliang. A great challenge to solve nitrogen pollution from intensive agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1-6.

[85] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5 968): 1 008-1 010.

[86] CONLEY D J, PAERL H W, HOWARTH R W, et al. ECOLOGY: controlling eutrophication: Nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1 014-1 015.

[87] ZHENG X H, HAN S H, HUANG Y, et al. Re-quantifying the emission

10


factors based on field measurements and estimating the direct N2O emission from Chinese croplands[J]. Global Biogeochemical Cycles, 2004, 18(2):1-19.

[88] 李祯, 史海滨, 李仙岳, . 不同水氮运筹模式对田间土壤氨挥发及春玉米籽粒产量的影响[J]. 农业环境科学学报, 2017, 36(4): 799-807. LI Zhen, SHI Haibin, LI Xianyue, et al. Ammonia volatilization in soil

and grain yield of the spring maize under different water-nitrogen management regimes[J]. Journal of Agro-Environment Science (J. Agro-Environ. Sci.), 2017, 36(4): 799-807.

[89] 李祯, 史海滨, 李仙岳, . 农田硝态氮淋溶规律对不同水氮运筹模式的响应[J]. 水土保持学报, 2017, 31(1): 310-317.

LI Zhen, SHI Haibin, LI Xianyue, et al. Response of the nitrate nitrogen leaching law to different water-nitrogen management patterns in farmland[J]. Journal of Soil and Water Conservation, 2017, 31(1): 310-317.

[90] 刘德平, 杨树青, 史海滨, . 氮磷配施条件下作物产量及水肥利用效率[J]. 生态学杂志, 2014, 33(4): 902-909.

LIU Deping, YANG Shuqing, SHI Haibin, et al. Crop yield and water-fertilizer utilization efficiency under combined application of nitrogen and phosphorous[J]. Chinese Journal of Ecology, 2014, 33(4): 902-909.

[91] WU Y P, LI Y F, ZHANG Y, et al. Responses of saline soil properties and cotton growth to different organic amendments[J]. Pedosphere, 2018, 28(3): 521-529.

[92] LIANG Y C, SI J, NIKOLIC M, et al. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization[J]. Soil Biology and Biochemistry, 2005, 37(6): 1 185-1 195.

[93] TEJADA M, GARCIA C, GONZALEZ J L, et al. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil[J]. Soil Biology and Biochemistry, 2006, 38(6): 1 413-1 421.

[94] WU Y P, LI Y F, ZHENG C Y, et al. Organic amendment application influence soil organism abundance in saline alkali soil[J]. European Journal of Soil Biology, 2013, 54: 32-40.

[95] OO A N, IWAI C B, SAENJAN P. Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms[J]. Land Degradation & Development, 2015, 26(3): 300-310.

[96] 周慧, 史海滨, 徐昭, . 化肥有机肥配施对盐渍化土壤氨挥发及玉米产量的影响[J]. 农业环境科学学报, 2019, 38(7): 1 649-1 656. ZHOU Hui, SHI Haibin, XU Zhao, et al. Effects of combined

application of chemical and organic fertilizers on ammonia volatilization and maize yield in salinized soil[J]. Journal of Agro-Environment Science, 2019, 38(7): 1 649-1 656.

[97] YIN F, FU B J, MAO R Z. Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin,


史海滨 等:内蒙古河套灌区节水灌溉与水肥高效利用研究展望


China[J]. Journal of Soils and Sediments, 2007, 7(3): 136-142.

[98] KESSEL J V, REEVES J. Nitrogen mineralization potential of dairy manures and its relationship to composition[J]. Biology & Fertility of Soils, 2002, 36(2): 118-123.

[99] WESTERMAN R L, TUCKER T C. Effect of salts and salts plus nitrogen-15-labeled ammonium chloride on mineralization of soil nitrogen, nitrification, and immobilization[J]. Soil Science Society of America Journal, 1974, 38(4): 602-605.

[100] PRAVEEN-KUMAR, AGGARWAL R K. Interdependence of ammonia volatilization and nitrification in arid soils[J]. Nutrient Cycling in Agroecosystems, 1998, 51(3): 201-207.

[101] 刘彩彩, 张孟妮, 武雪萍, . 微喷水肥一体化氮肥后移对夏玉米氮素吸收及籽粒产量品质的影响[J]. 中国土壤与肥料, 2019(6): 108-113. LIU Caicai, ZHANNF Mengni, WU Xueping, et al. Effects of

integrated micro-water spraying fertilizer on nitrogen uptake and grain yield and quality of summer maize[J]. Soils and Fertilizers Sciences in China, 2019(6): 108-113.

[102] 张智猛. 氮水互作对不同类型玉米产量品质形成生理特性的影响

[D]. 泰安: 山东农业大学, 2002.

ZHANG Zhimeng. Effect of the interaction of nitrogen and water on physiological characteristic of yield and quality of different types of maize (Zay mays L.)[D]. Taian: Shandong Agricultural University, 2002.

[103] 吕东波, 吴景贵, 李建明, . 不同缓控尿素对春玉米产量、品质及土壤有机氮的动态影响[J]. 水土保持学报, 2016, 30(3): 165-170, 249. LYU Dongbo, WU Jinggui, L Jianming, et al. Effects of different slow

controlled release urea on yield, quality of spring maize and soil organic nitrogen dynamic[J]. Journal of Soil and Water Conservation, 2016, 30(3): 165-170, 249.

[104] 刘洪禄, 马福生, 许翠平, . 再生水灌溉对冬小麦和夏玉米产量及品质的影响[J]. 农业工程学报, 2010, 26(3): 82-86.

LIU Honglu, MA Fusheng, XU Cuiping, et al. Effect of irrigation with reclaimed water on quality and yield of winter wheat and summer corn[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 82-86.

[105] 闫建文. 盐渍化土壤玉米水氮迁移规律及高效利用研究[D]. 呼和浩: 内蒙古农业大学, 2014.

YAN Jianwen. Study on the water and nitrogen migration regularity and efficient utilization of maize in the salinity soil [D]. Hohhot: Inner Mongolia Agricultural University, 2014.

[106] 卢星航, 史海滨, 李瑞平, . 覆盖后秋浇对翌年春玉米生育期水热盐及产量的影响[J]. 农业工程学报, 2017, 33(1): 148-154.

LU Xinghang, SHI Haibin, LI Ruiping, et al. Effect of autumn irrigation after mulching on water-heat-salt and yield of following spring maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 148-154.

[107] 申孝军, 孙景生, 刘祖贵, . 灌水控制下限对冬小麦产量和品质的


影响[J]. 农业工程学报, 2010, 26(12): 58-65.

SHEN Xiaojun, SUN Jingsheng, LIU Zugui, et al. Effects of low irrigation limits on yield and grain quality of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 58-65.

[108] 乔冬梅, 韩洋, 齐学斌, . 考虑盐分累积及冬小麦产量品质的井渠结合灌溉模式优选[J]. 农业工程学报, 2019, 35(18): 78-85.

QIAO Dongmei, HAN Yang, QI Xuebin, et al. Optimization of well-canal irrigation mode considering salt accumulation and winter wheat yield and quality[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 78-85.

[109] 姚素梅, 吴大付, 杨文平, . 喷灌促进小麦籽粒淀粉积累提高其品[J]. 农业工程学报, 2015, 31(19): 97-102.

YAO Sumei, WU Dafu, YANG Wenping, et al. Sprinkler irrigation enhancing accumulation and quality properties of starch in wheat grain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 97-102.

[110] 韩惠芳, 赵丹丹, 沈加印, . 灌水量和时期对宽幅精播冬小麦产量及品质特性的影响[J]. 农业工程学报, 2013, 29(14): 109-114.

HAN Huifang, ZHAO Dandan, SHEN Jiayin, et al. Effect of irrigation amount and stage on yield and quality of winter wheat under wide-precision planting pattern[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 109-114.

[111] CHEN J L, KANG S Z, DU T S, et al. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition[J]. Agricultural Water Management, 2014, 146: 131-148.

[112] 胡田田, 何琼, 洪霞, . 基于模糊 Borda 组合模型评价番茄产量及品质对水肥供应响应[J]. 农业工程学报, 2019, 35(19): 142-151.

HU Tiantian, He Qiong, Hong Xia, et al .Response of tomato yield-quality evaluated by fuzzy Borda combined model to irrigation and fertilization supply[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 142-151.

[113] FLAGELLA Z, GIULIANI M M, ROTUNNO T, et al. Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid[J]. European Journal of Agronomy, 2004, 21(2): 267-272.

[114] STEER B T, SEILER G J. Changes in fatty acid composition of sunflower (Helianthus annuus) seeds in response to time of nitrogen application, supply rates and defoliation[J]. Journal of the Science of Food and Agriculture, 1990, 51(1): 11-26.

[115] FLAGELLA Z, ROTUNNO T, TARANTINO E, et al. Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime[J]. European Journal of Agronomy, 2002, 17(3): 221-230.

[116] LAJARA J R, DIAZ U, QUIDIELLO R D. Definite influence of

11


灌溉排水学报http://www.ggpsxb.com


location and climatic conditions on the fatty acid composition of sunflower seed oil[J]. Journal of the American Oil Chemists' Society, 1990, 67(10): 618-623.

[117] 孔东, 史海滨, 魏占民, . 干旱区不同水盐处理对向日葵生理性状的影响研究[J]. 灌溉排水学报, 2004, 23(1): 44-46, 51.

KONG Dong, SHI Haibin, WEI Zhanmin, et al. Effect on physiological properties of sunflower under water-saving irrigation in the arid areas[J]. Journal of Irrigation and Drainage, 2004, 23(1): 44-46, 51.

[118] 孔东, 史海滨, 李延林, . 不同盐分条件下油葵光合日变化特征研[J]. 干旱地区农业研究, 2005, 23(1): 111-115.

KONG Dong, SHI Haibin, LI Yanlin, et al. Studies on photosynthetic rate of oil sunflower under difference salt stresses[J]. Agricultural Research in the Arid Areas, 2005, 23(1): 111-115.

[119] 李为萍, 史海滨, 李仙岳, . 水氮交互对油用向日葵粗脂肪及脂肪酸组分的影响[J]. 中国油料作物学报, 2015, 37(6): 838-845.

LI Weiping, SHI Haibin, LI Xianyue, et al. Oil sunflower crude fat and


fatty acid composition under water and nitrogen coupling[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(6): 838-845.

[120] 李为萍. 盐渍化灌区油葵品质对水--盐耦合的动态响应效应研[D]. 呼和浩特: 内蒙古农业大学, 2013.

LI Weiping. Dynamic response of sunflower quality on the soil condition of water-fertilizer-salt coupling in the salinization district [D].

Huhhot: Inner Mongolia Agricultural University, 2013

[121] LI W P, SHI H B, ZHU K, et al. The quality of sunflower seed oil changes in response to nitrogen fertilizer[J]. Agronomy Journal, 2017, 109(6): 2 499-2 507.

[122] 贺新. 水盐协同调控对作物产量与品质的影响机理及其应用研究

[D]. 北京: 中国农业大学, 2015.

HE Xin. Influence Mechanisms and the application of water-salt coordinated regulation technique on crop yield and quality[D]. Beijing: China Agricultural University, 2015.


Water-Saving Irrigation and Utilization Efficiency of Water and Fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for Future Research

SHI Haibin1, 2, YANG Shuqing1, 2, LI Ruiping1, 2, LI Xianyue1, 2,

LI Weiping1, 2, YAN Jianwen1, 2, MIAO Qingfeng1, 2, LI Zhen1, 2

(1.College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Research and Development of Efficient Water-saving Technology and Equipment and Research Engineering Center of Soil and Water Environment Effect in Arid Area of Inner Mongolia Autonomous Region, Hohhot 010018, China)

Abstract: Water resource scarcity, soil salinization and low use efficiency of water and fertilizer are a hat-trick of challenges facing development of sustainable agriculture in Hetao irrigation district of Inner Mongolia. With water-saving projects being constructed and the restriction on water use by the Yellow River Conservancy Commission implemented, the amount of water available for diversion from the Yellow river to the district has been in decline continuously over the past few decades. As such, water resource allocation, irrigation and fertilization method and amount, as well as ecological environment in the district have all changed markedly. Resolving the problems facing modernly reconstructing the irrigation district needs breaking-ground research in many areas. We

summarize in this paper the research results in this district over the past two decades in areas including agricultural water consumption, theory in efficient water-saving irrigation, water-saving irrigation system, control and mitigation of soil salinization, effect of water-saving on crop quality, impact of water-nitrogen coupling, the mechanisms involved in organic-inorganic fertilizer coupling in maintaining and improving crop productivity in the salinized irrigation area. We conclude that, to maintain ecological security and sustainability of the irrigation district, research in areas including efficient water-saving irrigation, improving irrigation systems and crop quality, increasing soil carbon sequestration and nitrogen cycling, nitrogen mineralization and application of modern technology should be strengthened.

Key words: Hetao irrigation district; water saving and salt control; efficient utilization of water and fertilizer; crop quality; ecological environment

责任编辑:乔冬梅

12


国家节水灌溉杨凌工程技术研究中心   陕ICP备05001586号   技术支持: 杨凌贝塔网络